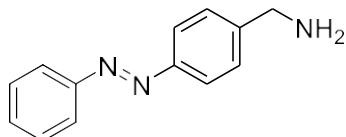


Supporting Information / Informações Suplementares

Ruiz-Soriano, A., et al. (2025)
Dehydroabietic Acid vs. Azo Derivatives: Structural Integrity as a Key to Preserving Antimicrobial and Antibiofilm Potency.
Biomedical and Biopharmaceutical Research, 22(2), 1-17.
<https://doi.org/10.19277/bbr.22.2.371>

Table of Contents

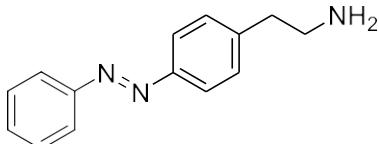

1. General Information.....	S2
2. Synthesis and Characterization.....	S3
3. NMR Spectra.....	S8
4. UV-Vis Spectra.....	S11
5. Antimicrobial activity: MIC and MBC values of the tested samples.....	S12

1. General Information

All solvents and reagents used were purchased from commercial suppliers and used without further purification. TLC analysis was carried out on aluminum sheets coated with silica gel and visualized using UV light. ^1H -NMR spectra were obtained at room temperature on a Bruker 400 MHz spectrometer. ^{13}C -NMR spectra were obtained at 100 MHz. All NMR spectra were processed using MestReNova NMR software. Chemical shifts are reported in parts per million (ppm) and coupling constants (J) are reported in Hz. Splitting patterns are reported as follows: singlet (s), doublet (d), triplet (t), quadruplet (q), quintuplet (quint), doublet of doublets (dd), doublet of doublets of doublets (ddd), multiplet (m), etc. NMR signals were assigned using the appropriate 2D NMR experiments (*i.e.* HSQC and HMBC when necessary). High-resolution mass spectrometry (HRMS) and EI-MS were performed by Unitat de Cromatografia de Gasos-Espectrometria de Masses Aplicada, Centres Científics i Tecnològics de la Univeritat de Barcelona (CCiTUB). All manipulations between irradiations and analysis by UV-Vis were carried out in a dark room. Irradiation with blue light was performed using a 4 W LED bulb. Irradiation with UV light (365 nm) was performed with a TLC visualization lamp. Irradiation under sunlight was performed exposing solutions of compounds to sunlight outdoors. UV-Vis spectra were recorded after irradiation at different wavelengths (356, 380, 405, 420, 455, 470, 530 and 650 nm) of 50 μM solutions in DMSO in a 96-well plate.

2. Synthesis and Characterization

(E)-(4-(phenyldiazenyl)phenyl)methanamine (S1).



To a stirred solution of (E)-2,2,2-trifluoro-*N*-(4-(phenyldiazenyl)benzyl)acetamide¹ (2.10 g, 6.83 mmol) in THF (3.6 mL) was added an aqueous solution of NaOH 10% (13.6 mL). After 6 h the reaction was checked by TLC (EtOAc/MeOH, 9:1) to confirm full conversion. The reaction mixture was diluted with H₂O (volume?), and the aqueous phase was extracted with CH₂Cl₂ (3 x 15 mL). The organic fractions were combined, washed with brine (volume?), dried with anhydrous Na₂SO₄, and concentrated under reduced pressure. The title product was obtained as an orange solid (1.40 g, quant.). ¹H-NMR matches reported spectra.²

¹H-NMR (400 Hz, CDCl₃): δ 7.94 (m, C_{Ar}H, 4 H), 7.50 (m, C_{Ar}H, 5 H), 3.96 (s, CH₂, 2 H) ppm. NH₂ not observed.

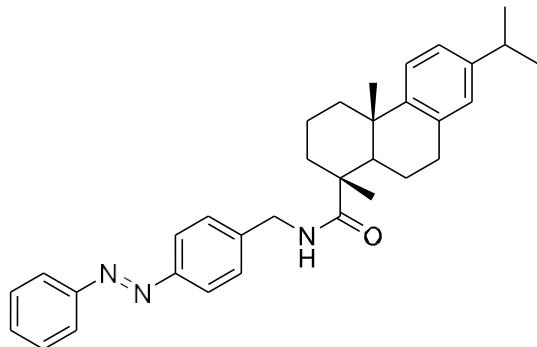
¹³C-NMR (100 Hz, CDCl₃): δ 152.7 (C_{Ar}), 151.7 (C_{Ar}), 146.6 (C_{Ar}), 130.9 (C_{Ar}H), 129.1 (C_{Ar}H), 127.7 (C_{Ar}H), 123.2 (C_{Ar}H), 122.8 (C_{Ar}H), 46.2 (CH₂) ppm.

(E)-2-(4-(phenyldiazenyl)phenyl)ethan-1-amine (S2).

To a stirred solution of (E)-2,2,2-trifluoro-*N*-(4-(phenyldiazenyl)phenethyl)acetamide¹ (1.70 g, 5.29 mmol) in THF (2.8 mL) was added an aqueous solution of NaOH 10% (10.6 mL). After 6 h the reaction was checked by TLC (EtOAc/MeOH, 9:1) to confirm full conversion. The reaction mixture was diluted with H₂O, and the aqueous phase was extracted with DCM (3 x 15 mL). The organic fractions were combined, washed with brine (volume?), dried with anhydrous Na₂SO₄, and concentrated under reduced pressure. The title product was obtained as an orange solid (1.21 g, quant.). ¹H-NMR matches reported spectra.³

¹H-NMR (400 Hz, CDCl₃): δ 7.94-7.84 (m, C_{Ar}H, 4 H), 7.55-7.42 (m, C_{Ar}H, 3 H), 7.34 (d, J = 8.6 Hz, C_{Ar}H, 2 H), 3.01 (t, J = 6.8 Hz, CH₂, 2 H), 2.82 (t, J = 6.8 Hz, CH₂, 2 H) ppm. NH₂ not observed.

¹³C-NMR (100 Hz, CDCl₃): δ 152.8 (C_{Ar}), 151.4 (C_{Ar}), 143.4 (C_{Ar}), 130.9 (C_{Ar}H), 129.6 (C_{Ar}H), 129.1 (C_{Ar}H), 123.1 (C_{Ar}H), 122.9 (C_{Ar}H), 43.5 (CH₂), 40.1 (CH₂) ppm.

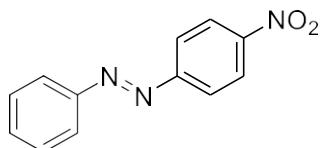

¹ Ruiz-Soriano, A.; Lamelza, L.; Pizzamiglio, E.; Just-Baringo, X. *J. Org. Chem.* **2024**, 89, 17141-17146.

² Shimogaki, T.; Oshita, S.; Matsumoto, A. *Macromol. Chem. Phys.* **2011**, 212, 1767-1777.

³ Gu, L.; Liu, X.; Dong, S.; Chen, Z.; Han, R.; He, C.; Wang, D.; Zheng, Y. *Polym. Chem.* **2020**, 11, 1871-1876.

¹H-NMR (400 Hz, CDCl₃): δ 7.86-7.79 (m, C_{Ar}H, 4 H), 7.51-7.45 (m, C_{Ar}H, 2 H), 7.40 (tt, *J* = 7.2, 1.2 Hz) 7.34 (dt, *J* = 8.8, 2.8 Hz, C_{Ar}H, 2 H), 4.05 (brs, NH₂, 2H) ppm.

(1*R*,4*aS*)-7-isopropyl-1,4*a*-dimethyl-*N*-(4-((*E*)-phenyldiazenyl)benzyl)-1,2,3,4,4*a*,9,10,10*a*-octahydrophenanthrene-1-carboxamide (DHA_Azo1).**

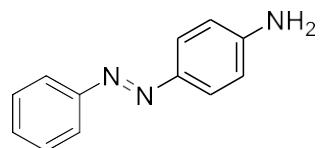

To a thick-wall glass reaction tube charged with dehydroabietic acid (50 mg, 0.17 mmol) dissolved in CH₂Cl₂ (1.3 mL) was added thionyl chloride (24 μ L, 0.33 mmol). The tube was sealed and the reaction mixture was stirred at 65 °C. After 4 h, the mixture was allowed to cool to room temperature and volatiles were co-evaporated with the aid of toluene. The acid chloride of the dehydroabietic acid thus obtained was purged with Argon, dissolved in anhydrous CH₂Cl₂ (0.8 mL) and added dropwise to a stirring solution of amine **S1** (35.1 mg, 0.17 mmol) and NEt₃ (32 μ L, 0.23 mmol) in anhydrous CH₂Cl₂ (0.8 mL). After stirring at room temperature for 18 h, the reaction mixture was diluted with CH₂Cl₂ (10 mL) and H₂O (10 mL). The organic phase was washed with 1 N HCl (3 \times 10 mL), 2 M NaOH (3 \times 10 mL) and brine (1 \times 10 mL). Then, the organic phase was dried with anhydrous Na₂SO₄ and concentrated under reduced pressure. The crude product was purified by column chromatography (hexane/EtOAc, 97.5:2.5 + 1% NEt₃ to 80:20 + 1% NEt₃), affording the title compound as an orange oil (55 mg, 68%).

¹H-NMR (400 Hz, CDCl₃): δ 7.96-7.87 (m, C_{Ar}H Azo, 4 H), 7.56-7.45 (m, C_{Ar}H Azo, 3 H), 7.41 (d, *J* = 8.4 Hz, C_{Ar}H Azo, 2 H), 7.17 (d, *J* = 8.0 Hz, C_{Ar}H, 1 H), 7.00 (dd, *J* = 8.0, 2.0 Hz, C_{Ar}H, 1 H), 6.88 (d, *J* = 2.0 Hz, C_{Ar}H, 1 H), 6.26 (t, *J* = 5.6 Hz, CONH, 1 H), 4.54 (dd, *J* = 14.8, 5.6 Hz, CH₂NHCO, 1 H), 4.52 (dd, *J* = 14.8, 5.6 Hz, CH₂NHCO, 1 H), 2.91-2.78 (m, 3 H), 2.32 (d, *J* = 13.2 Hz, CH₂, 1 H), 2.18 (dd, *J* = 12.4, 2.0 Hz, CH, 1 H), 1.89-1.48 (m, 7 H), 1.31 (s, CH₃, 3 H), 1.25-1.20 (m, CH₃ + CH(CH₃)₂, 9 H) ppm.

¹³C-NMR (100 Hz, CDCl₃): δ 178.6 (CONH), 152.8 (C_{Ar}N), 151.6 (C_{Ar}N), 147.1 (C_{Ar}), 145.8 (C_{Ar}), 142.6 (C_{Ar}), 134.8 (C_{Ar}), 131.1 (C_{Ar}H Azo), 129.7 (C_{Ar}H Azo), 129.2 (C_{Ar}H Azo), 127.0 (C_{Ar}H DHHA), 123.3 (C_{Ar}H Azo), 122.9 (C_{Ar}H Azo), 124.1 (C_{Ar}H DHHA), 124.0 (C_{Ar}H DHHA), 47.4 (C), 45.5 (CH), 40.8 (CH₂), 38.0 (CH₂), 37.4 (C), 37.2 (CH₂), 35.8 (CH₂), 33.6 (CH), 30.1 (CH₂), 25.3 (CH₃), 24.1 (CH₃), 21.2 (CH₂), 18.9 (CH₂), 16.6 (CH₃) ppm.

HRMS calcd for C₃₃H₄₀ON₃ [M+H]⁺ :494.3166, found 494.3175.

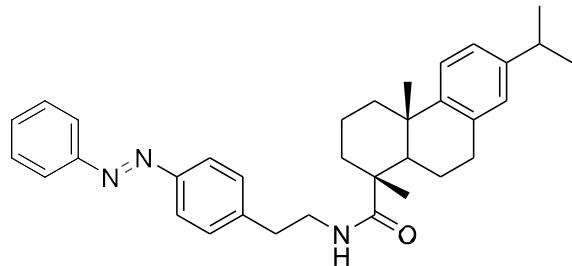
(E)-1-(4-nitrophenyl)-2-phenyldiazene (S3).



A solution of *p*-nitroaniline (2.97 g, 21.5 mmol) in CH_2Cl_2 (75 mL, 0.3 M) was added to a round bottom flask containing a solution of Oxone® (13.2 g, 21.5 mmol) in H_2O (75 mL, 0.3 M). The mixture was stirred vigorously with an oval stirring bar at room temperature. The progress of the reaction was checked by TLC ($\text{CH}_2\text{Cl}_2/\text{MeOH}$, 90:10). The solution gradually turned green as the desired nitroso compound formed. Once the TLC showed full conversion, the layers were separated, and the aqueous layer was extracted with CH_2Cl_2 (3 × 15 mL). The combined organic layers were washed with 1 N aqueous HCl (40 mL), saturated aqueous NaHCO_3 (40 mL), H_2O (40 mL) and brine (40 mL). Then, the organic phase was dried with anhydrous Na_2SO_4 and concentrated under reduced pressure to around 15 mL. The crude thus obtained was checked by $^1\text{H-NMR}$ to confirm clean full conversion into the nitroso intermediate and was used without purification.

To a three-neck round bottom flask loaded with a stirring solution of the crude nitroso compound in acetic acid (14 mL) at room temperature under N_2 , aniline (1.97 mL, 21.5 mmol) was added dropwise. After 18 h stirring at room temperature, the solvent was removed under reduced pressure. The residue obtained was dissolved in EtOAc (75 mL) and the resulting solution was washed with 2 M NaOH (3 × 30 mL), saturated aqueous NaHCO_3 (1 × 30 mL) and brine (1 × 30 mL). Then, the organic phase was dried with anhydrous Na_2SO_4 and concentrated under reduced pressure. The crude was purified by silica gel column chromatography (hexane/ EtOAc , 98:2), affording the title compound as an orange solid (2.53 g, 52%). $^1\text{H-NMR}$ matches reported spectra.⁴

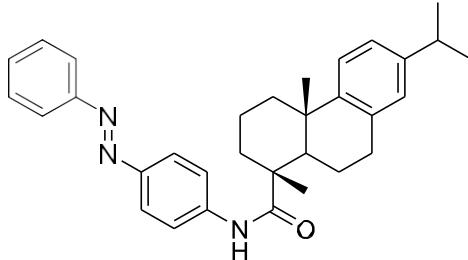
$^1\text{H-NMR}$ (400 Hz, CDCl_3): δ 8.39 (d, J = 8.8 Hz, $\text{C}_{\text{Ar}}\text{H}$, 2 H), 8.04 (d, J = 8.8 Hz, $\text{C}_{\text{Ar}}\text{H}$, 2 H), 8.0-7.95 (m, $\text{C}_{\text{Ar}}\text{H}$, 2 H), 7.60-7.53 (m, $\text{C}_{\text{Ar}}\text{H}$, 3 H) ppm.


(E)-4-(phenyldiazenyl)aniline (S4).

To a stirred solution of **S3** (2.53 g, 11.1 mmol) in $\text{THF:H}_2\text{O}$ (3:1, 145 mL) was added Na_2S (8.12 g, , 32% purity 33.3 mmol) and stirred at reflux. After 3 h, a second portion of Na_2S (8.12 g, , 32% purity 33.3 mmol) was added and the mixture and stirred for 2 more hours. After TLC showed full conversion, the reaction was cooled to room temperature and concentrated under reduced pressure. We added 150 mL of EtOAc and washed with 1 M NaOH (3 × 50 mL) and brine (50 mL). Then, the organic phase was dried with anhydrous Na_2SO_4 and concentrated under reduced. The crude was purified by silica gel column chromatography ($\text{CH}_2\text{Cl}_2/\text{MeOH}$, 100:0 to 97.5:2.5), affording the title compound as an orange solid (1.76 g, 80%). $^1\text{H-NMR}$ matches reported spectra.³

⁴ Schönberg, M.; Althaus, M.; Fronius, M.; Clauss, W.; Trauner, D. *Nature Chemistry* **2014**, 6, 712–719.

(1*R*,4*aS*)-7-isopropyl-1,4*a*-dimethyl-N-(4-((*E*)-phenyldiazenyl)phenethyl)-1,2,3,4,4*a*,9,10,10*a*-octahydrophenanthrene-1-carboxamide (DHA_Azo2).**


To a thick-wall glass reaction tube charged with dehydroabietic acid (50 mg, 0.17 mmol) dissolved in CH_2Cl_2 (1.3 mL) was added thionyl chloride (24 μL , 0.33 mmol). The tube was sealed and the reaction mixture was stirred at 65 °C. After 4 h, the mixture was allowed to cool to room temperature and volatiles were co-evaporated with toluene. The acid chloride of the dehydroabietic acid thus obtained was purged with Argon, dissolved in anhydrous CH_2Cl_2 (0.8 mL) and added dropwise to a stirring solution of amine **S2** (37.4 mg, 0.17 mmol) and NEt_3 (32 μL , 0.23 mmol) in anhydrous CH_2Cl_2 (0.8 mL). After stirring at room temperature for 18 h, the reaction mixture was diluted with CH_2Cl_2 (10 mL) and H_2O (10 mL). The organic phase was washed with 1 N HCl (3 \times 10 mL), 2 M NaOH (3 \times 10 mL) and brine (1 \times 10 mL). Then, the organic phase was dried with anhydrous Na_2SO_4 and concentrated under reduced pressure. The crude product was purified by column chromatography (hexane/EtOAc, 97.5:2.5 + 1% NEt_3 to 80:20 + 1% NEt_3), affording the title compound as an orange oil (34 mg, 39%).

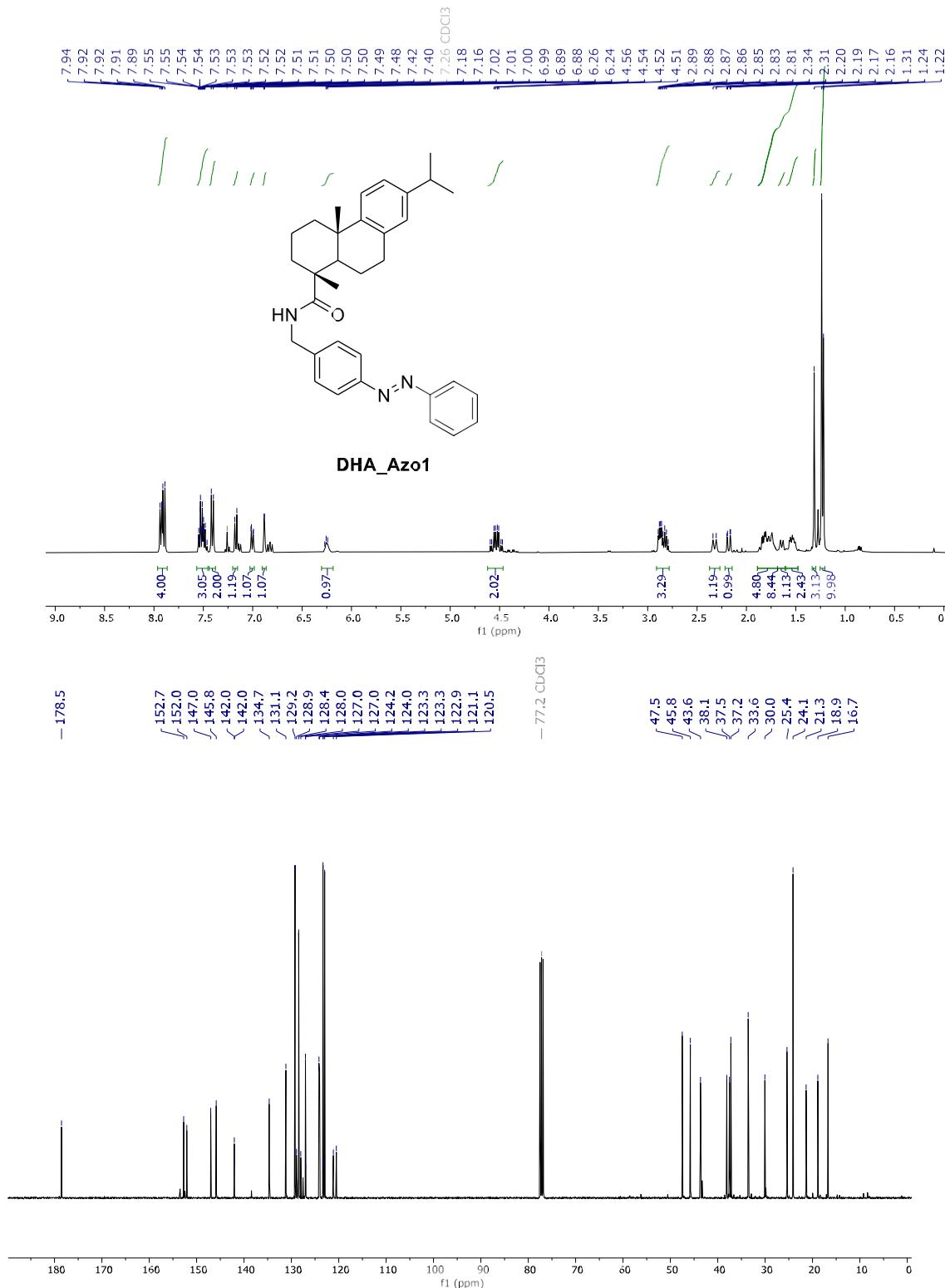
$^1\text{H-NMR}$ (400 Hz, CDCl_3): δ 7.92 (d, J = 6.8 Hz, $\text{C}_{\text{Ar}}\text{H Azo}$, 2 H), 7.88 (d, J = 8.4 Hz, $\text{C}_{\text{Ar}}\text{H Azo}$, 2 H), 7.56-7.44 (m, $\text{C}_{\text{Ar}}\text{H Azo}$, 3 H), 7.35 (d, J = 8.4 Hz, $\text{C}_{\text{Ar}}\text{H Azo}$, 2 H), 7.14 (d, J = 8.0 Hz, $\text{C}_{\text{Ar}}\text{H}$, 1 H), 6.98 (dd, J = 8.0, 2.0 Hz, $\text{C}_{\text{Ar}}\text{H}$, 1 H), 6.83 (d, J = 2.0 Hz, $\text{C}_{\text{Ar}}\text{H}$, 1 H), 5.83 (t, J = 6.0 Hz, CONH, 1 H), 3.60 (q, J = 6.4 Hz, CH_2NHCO , 2 H), 2.92 (t, J = 6.8 Hz, $\text{CH}_2\text{CH}_2\text{NHCO}$, 2 H), 2.80 (m, $\text{CH}_2 + \text{CH}$, 3 H), 2.28 (d, J = 12.8 Hz, CH_2 , 1 H), 2.08 (dd, J = 12.4, 2.4 Hz, CH, 1 H), 1.80-1.32 (m, 7 H), 1.21 (s, CH_3 , 3 H), 1.20-1.18 (m, $\text{CH}_3 + \text{CH}(\text{CH}_3)_2$, 9 H) ppm.

$^{13}\text{C-NMR}$ (100 Hz, CDCl_3): δ 178.6 (CONH), 152.8 ($\text{C}_{\text{Ar}}\text{N}$), 151.6 ($\text{C}_{\text{Ar}}\text{N}$), 147.1 (C_{Ar}), 145.8 (C_{Ar}), 142.6 (C_{Ar}), 134.8 (C_{Ar}), 131.1 ($\text{C}_{\text{Ar}}\text{H Azo}$), 129.7 ($\text{C}_{\text{Ar}}\text{H Azo}$), 129.2 ($\text{C}_{\text{Ar}}\text{H Azo}$), 127.0 ($\text{C}_{\text{Ar}}\text{H DHA}$), 123.3 ($\text{C}_{\text{Ar}}\text{H Azo}$), 122.9 ($\text{C}_{\text{Ar}}\text{H Azo}$), 124.1 ($\text{C}_{\text{Ar}}\text{H DHA}$), 124.0 ($\text{C}_{\text{Ar}}\text{H DHA}$), 47.4 (C), 45.5 (CH), 40.8 (CH_2), 38.0 (CH_2), 37.4 (C), 37.2 (CH_2), 35.8 (CH_2), 33.6 (CH), 30.1 (CH_2), 25.3 (CH_3), 24.1 ($\text{CH}_3 \times 2$), 21.2 (CH_2), 18.9 (CH_2), 16.6 (CH_3) ppm.

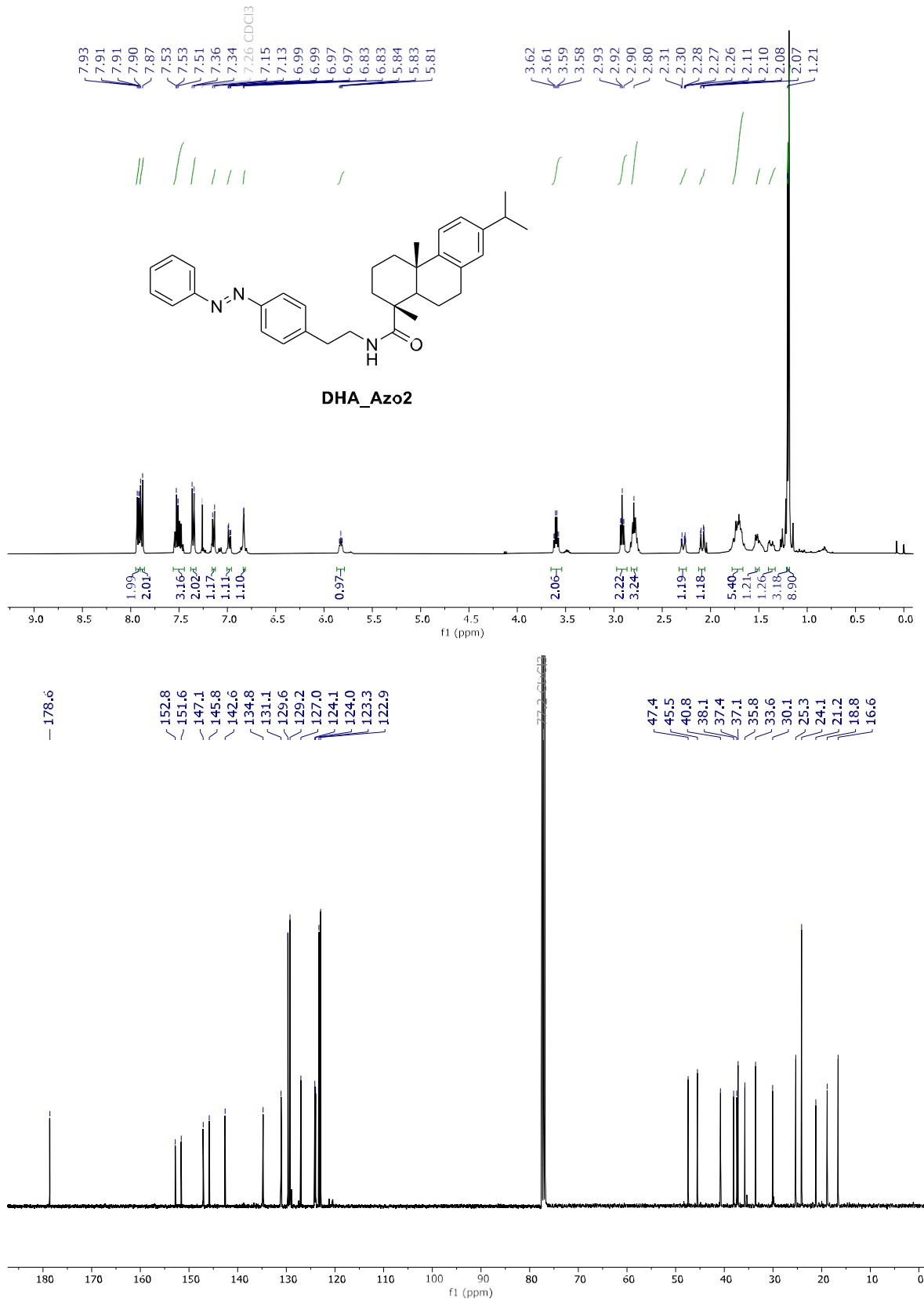
HRMS calcd for $\text{C}_{34}\text{H}_{42}\text{ON}_3$ [$\text{M}+\text{H}$]⁺ :508.3322, found 508.3326.

(1*R*,4*aS*)-7-isopropyl-1,4*a*-dimethyl-*N*-(4-((*E*)-phenyldiazenyl)phenyl)-1,2,3,4,4*a*,9,10,10*a*-octahydrophenanthrene-1-carboxamide (DHA_Azo0).**

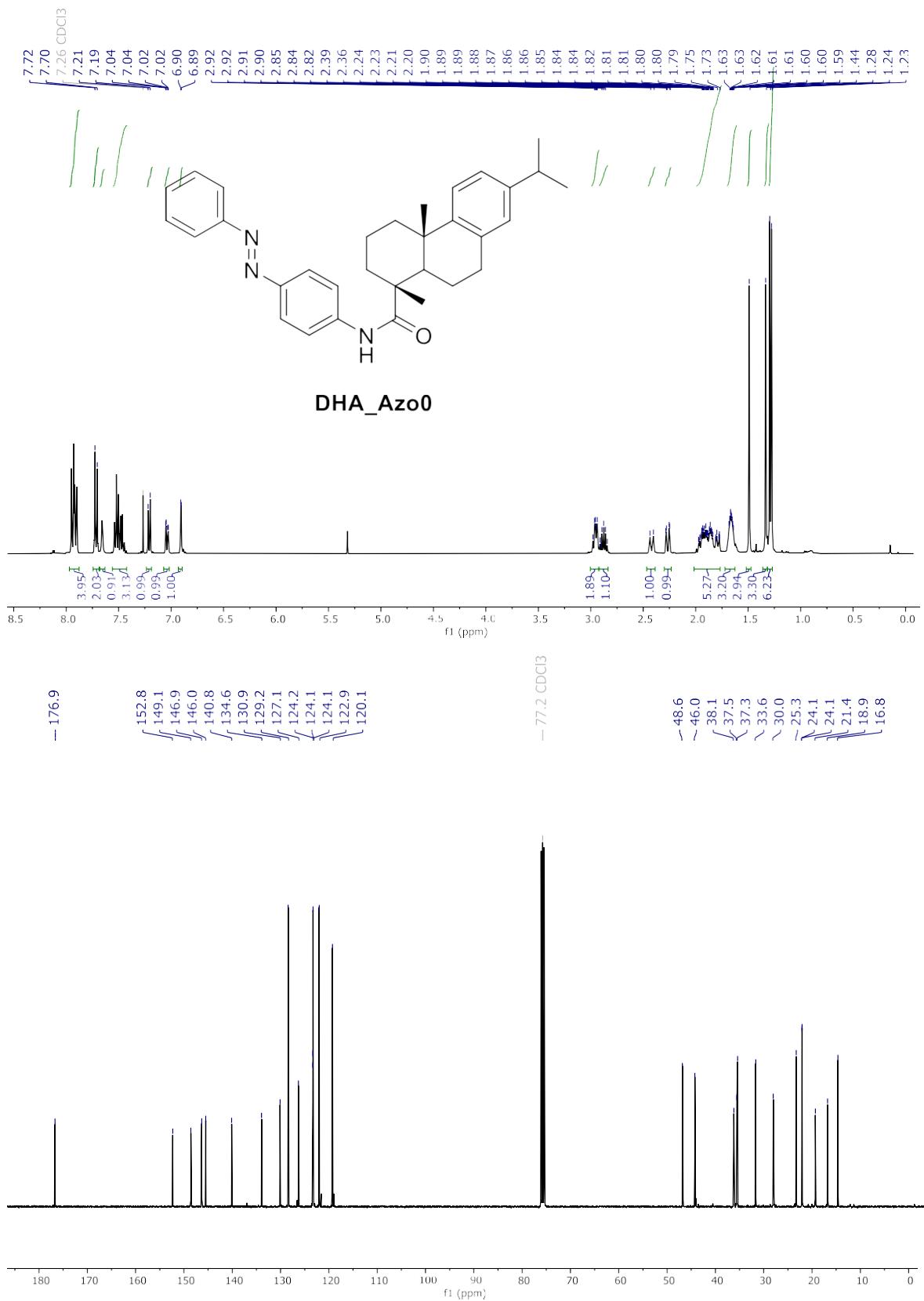
To a thick-wall glass reaction tube charged with dehydroabietic acid (50 mg, 0.17 mmol) dissolved in CH_2Cl_2 (1.3 mL) was added thionyl chloride (24 μL , 0.33 mmol). The tube was sealed and the reaction mixture was stirred at 65 °C. After 4 h, the mixture was allowed to cool to room temperature and volatiles were co-evaporated with toluene. The acid chloride of the dehydroabietic acid thus obtained was purged with Argon, dissolved in anhydrous CH_2Cl_2 (0.8 mL) and added dropwise to a stirring solution of amine **S4** (32.7 mg, 0.17 mmol) and NEt_3 (32 μL , 0.23 mmol) in anhydrous CH_2Cl_2 (0.8 mL). After stirring at room temperature for 18 h, the reaction mixture was diluted with CH_2Cl_2 (10 mL) and H_2O (10 mL). The organic phase was washed with 1 N HCl (3 \times 10 mL), 2 M NaOH (3 \times 10 mL) and brine (1 \times 10 mL). The crude was purified by column chromatography (Hexane:EtOAc, 97.5:2.5 + 1% NEt_3 to 8:2 + 1% NEt_3), affording product the title compound as an orange oil (32 mg, 40%).

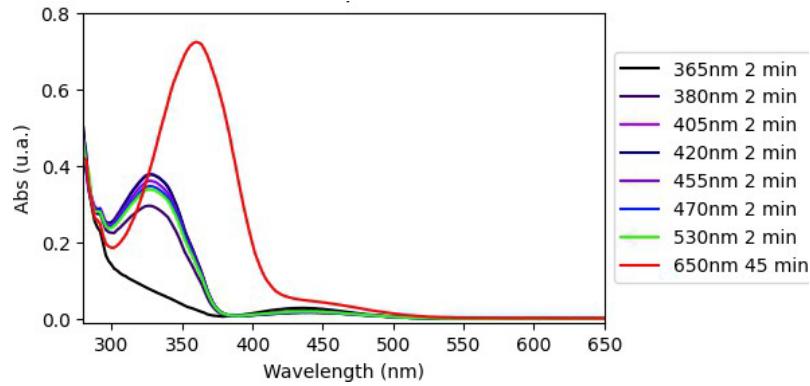
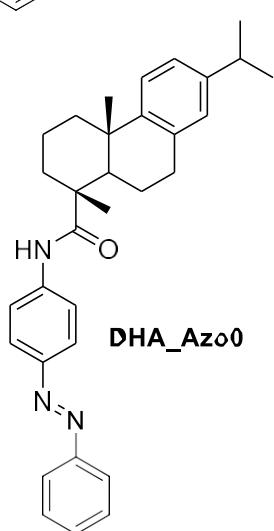
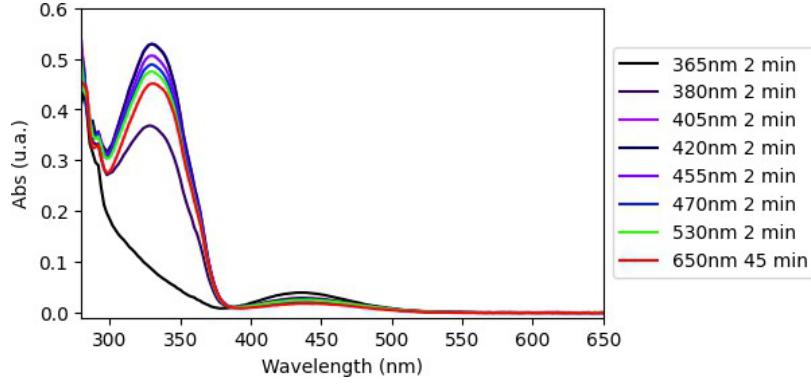
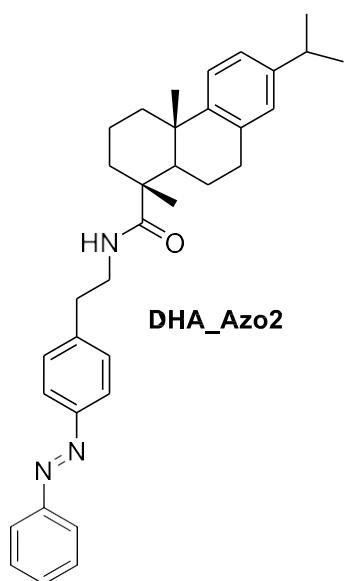
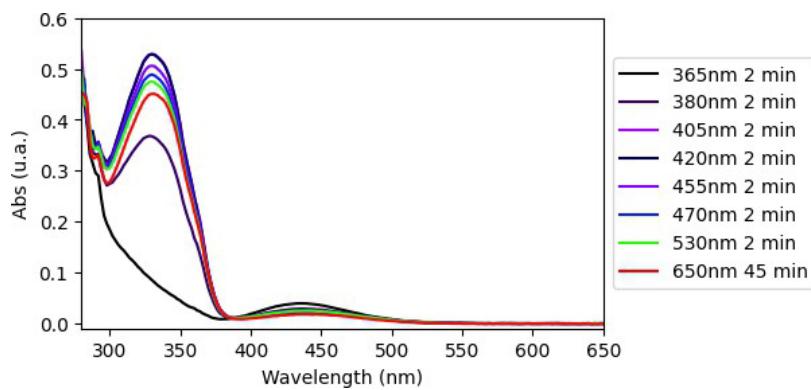
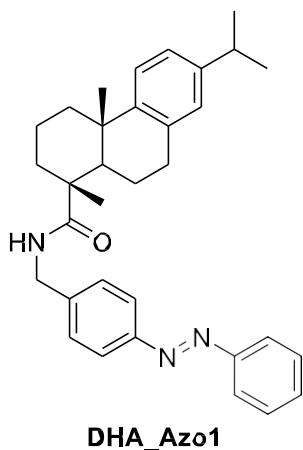

$^1\text{H-NMR}$ (400 Hz, CDCl_3): δ 7.97-7.88 (m, $\text{C}_{\text{Ar}}\text{H}$ Azo, 4 H), 7.71 (d, J = 8.8 Hz, $\text{C}_{\text{Ar}}\text{H}$ Azo, 2 H), 7.67 (s, CONH , 1 H), 7.55-7.41 (m, $\text{C}_{\text{Ar}}\text{H}$ Azo, 3 H), 7.20 (d, J = 8.4 Hz, $\text{C}_{\text{Ar}}\text{H}$, 1 H), 7.03 (dd, J = 8.4, 2.0 Hz, $\text{C}_{\text{Ar}}\text{H}$, 1 H), 6.89 (d, J = 2.0 Hz, $\text{C}_{\text{Ar}}\text{H}$, 1 H), 2.96-2.88 (m, CH_2 , 2 H), 2.84 (sept, J = 7.0 Hz, $\text{CH}(\text{CH}_3)_2$, 1 H), 2.38 (d, J = 13.2 Hz, CH , 1 H), 2.23 (dd, J = 12.4, 2.4 Hz, CH_2 , 1 H), 1.96-1.54 (m, 7 H), 1.44 (s, CH_3 , 3 H), 1.28 (s, CH_3 , 3 H), 1.24 (d, J = 7.0 Hz, $\text{CH}(\text{CH}_3)_2$, 6 H) ppm.

$^{13}\text{C-NMR}$ (100 Hz, CDCl_3): δ 176.9 (CONH), 152.8 ($\text{C}_{\text{Ar}}\text{N}$), 149.1 ($\text{C}_{\text{Ar}}\text{N}$), 146.9 (C_{Ar}), 146.0 (C_{Ar}), 140.8 (C_{Ar}), 134.6 (C_{Ar}), 130.9 ($\text{C}_{\text{Ar}}\text{H}$ Azo), 129.2 ($\text{C}_{\text{Ar}}\text{H}$ Azo), 127.1 ($\text{C}_{\text{Ar}}\text{H}$ DHA), 124.2 ($\text{C}_{\text{Ar}}\text{H}$ DHA), 124.1 ($\text{C}_{\text{Ar}}\text{H}$ DHA), 124.1 ($\text{C}_{\text{Ar}}\text{H}$ Azo), 122.9 ($\text{C}_{\text{Ar}}\text{H}$ Azo), 120.2 ($\text{C}_{\text{Ar}}\text{H}$ Azo), 48.6 (C), 46.0 (CH), 38.1 (CH₂), 37.5 (C), 37.3 (CH₂), 33.6 (CH(CH₃)₂), 30.0 (CH₂), 25.3 (CH₃), 24.1 (CH(CH₃)₂), 24.1 (CH(CH₃)₂), 21.4 (CH₂), 18.9 (CH₂), 16.8 (CH₃) ppm.


HRMS calcd for $\text{C}_{32}\text{H}_{38}\text{ON}_3$ [M+H]⁺ : 480.3009, found 480.3020.

3. NMR Spectra


(1*R*,4*aS*)-7-isopropyl-1,4*a*-dimethyl-*N*-(4-((*E*)-phenyldiazenyl)benzyl)-1,2,3,4,4*a*,9,10,10*a*-octahydrophenanthrene-1-carboxamide (DHA_Azo1).**







(1*R*,4*aS*)-7-isopropyl-1,4*a*-dimethyl-*N*-(4-((*E*)-phenyldiazenyl)phenethyl)-1,2,3,4,4*a*,9,10,10*a*-octahydrophenanthrene-1-carboxamide (DHA_Azo2).**

(1*R*,4*S*)-7-isopropyl-1,4a-dimethyl-N-(4-((*E*)-phenyldiazenyl)phenyl)-1,2,3,4,4a,9,10,10a-octahydrophenanthrene-1-carboxamide (DHA_Azo0).

4. UV-Vis Spectra

5. Antimicrobial activity: MIC and MBC values of the tested samples

Table S1: MIC and MBC values of the tested samples in µg/mL. Data represent the median values of at least three replicates.

	<i>S. aureus</i> 25923		<i>S. aureus</i> 43866		<i>E. faecalis</i>		<i>E. coli</i>		<i>P. aeruginosa</i>		<i>S. cerevisiae</i>		<i>C. albicans</i>	
Sample	MIC	MBC	MIC	MBC	MIC	MBC	MIC	MBC	MIC	MBC	MIC	MBC	MIC	MBC
DHA_Azo1_Blue	125	500	31.25	500	62.5	500	62.5	250	62.5	500	62.5	125	62.5	125
DHA_Azo1_UV	125	500	62.5	500	62.5	500	62.5	500	125	500	62.5	62.5	31.25	125
DHA_Azo1_Sun	125	500	31.25	500	125	500	125	500	125	500	31.25	31.25	31.25	62.5
DHA_Azo2_Blue	125	500	62.5	500	62.5	500	62.5	250	62.5	500	62.5	125	62.5	125
DHA_Azo2_UV	125	500	62.5	500	62.5	500	62.5	500	125	500	62.5	125	31.25	62.5
DHA_Azo2_Sun	125	500	31.25	<125	125	<500	125	<500	125	500	31.25	31.25	31.25	125
DHA_Azo0_Blue	125	<500	62.5	500	31.25	<500	62.5	500	125	500	62.5	250	62.5	62.5
DHA_Azo0_UV	125	500	62.5	500	62.5	500	125	500	125	500	62.5	125	62.5	125
DHA_Azo0_Sun	125	500	62.5	<250	125	<500	125	500	125	500	31.25	31.25	31.25	125
DHA_Blue	3.91	<31.25	0.98	3.91	0.98	7.81	62.5	250	62.5	500	62.5	125	31.25	62.5
DHA_UV	15.63	125	0.98	7.81	1.95	15.63	62.5	500	62.5	250	62.5	62.5	31.25	125
DHA_Sun	3.91	nt	0.49	<7.81	1.95	<15.63	62.5	500	125	500	31.25	31.25	15.63	62.5
Positive control	0.98	500	0.49	nt	>0.49	<500	0.49	500	0.98	500	7.8	500	1.95	62.5
	VAN		VAN		VAN		NOR		NOR		NYS		NYS	

nt, not tested; VAN – Vancomycin; NYS – Nystatin; NOR – Norfloxacin